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Introduction
Bacteria constantly encounter starvation or stress in their host or 
environment, necessitating efficient DNA repair to maintain ge-
nome stability. Phosphorylated guanosines, known as (p)ppGpp, 
are synthesized during stress and starvation in bacteria and they act 
as signaling molecules that regulate the function of critical proteins 
thereby leading to a global reprogramming of almost all essential 
cellular processes. (p)ppGpp was first identified by Cashel and 
Gallant through thin-layer chromatography of nucleotide extracts 
from Escherichia coli (E. coli) bacterial cultures starved of amino 
acids.1,2 They demonstrated that upon ribosomal stalling, caused 
by uncharged transfer RNA binding in the absence of amino ac-
ids, RelA, a ribosome-associated protein, synthesizes (p)ppGpp 
from guanosine triphosphate (GTP) or guanosine diphosphate. 

Since then, several research groups have worked to elucidate the 
function of (p)ppGpp through genetic and biochemical studies. (p)
ppGpp plays a vital role in maintaining GTP/ppGpp homeostasis 
within cells.3 It binds to several enzymes involved in nucleotide 
biosynthesis, leading to the inhibition of GTP biosynthesis dur-
ing starvation or stringent response.4–7 However, cells require 
substantial amounts of Guanosine triphosphate and Adenosine 
triphosphate (ATP) for replication and growth. During starvation 
and stringent response, ppGpp mediates an alternative pathway of 
GTP synthesis. This occurs through ppGpp binding to the tran-
scription factor - xanthine dehydrogenase regulator, leading to up-
regulation of the purine salvage pathway mediated by the xanthine 
dehydrogenase enzyme, thus maintaining a basal level of the GTP 
pool. This basal supply of GTP substrate contributes to (p)ppGpp 
synthesis under stringent conditions.8–10 Therefore the availabil-
ity of (p)ppGpp during stringent conditions is dependent upon the 
regulation of GTP levels by the enzymes of purine metabolism that 
salvage purines.

(p)ppGpp binds to various cellular targets, inhibiting key pro-
cesses such as transcription, translation, and replication. Notably, 
it binds to RNA polymerase, hindering transcription,11–14 and to 
DnaG primase, inhibiting replication.15 Furthermore, (p)ppGpp in-
teracts with initiation factor-2 and elongation factor-G, impeding 
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translation.16,17 The regulatory mechanism of ppGpp also occurs at 
the promoter level, either by interacting with another transcription 
factor or by directly binding to RNA polymerase, which can then 
bind to the discriminator sequence present upstream of the tran-
scription start site of genes. For example, (p)ppGpp-bound RNA 
polymerase binds to the promoter of dnaA, which codes for a rep-
lication initiation protein, thereby inhibiting its transcription.18–20 
Additionally, the sigma subunits of RNA polymerases are regu-
lated by ppGpp-bound RNA polymerases at their promoters.11,21 A 
similar regulation is found at the promoter regions of various stress 
response genes whose expression is influenced by ppGpp gener-
ated during stringent conditions.22,23 Though (p)ppGpp acts as a 
master regulator of essential cellular processes, how they regulate 
various DNA repair proteins during stress or stringent conditions 
remains largely unexplored.

Bacterial DNA repair pathways,24–26 operate meticulously to 
rectify lesions in their genome caused by diverse DNA-damaging 
agents. This review delves into the involvement of (p)ppGpp in 
some of the major DNA repair pathways including nucleotide 
excision repair, mismatch repair, and mutagenic strand break re-
pair. However, further studies investigating the in vivo role of (p)
ppGpp in these pathways in genome maintenance under cellular 
context are still needed. Additionally, this review article explores 
bacterial stress survival mechanisms involving various DNA repair 
pathways, such as the Save Our Soul response, stress-induced mu-
tagenesis, ciprofloxacin (CPX)-induced mutagenesis, which aid 
bacterial survival in the presence of antibiotics.27,28 The overlap-
ping function of (p)ppGpp in membrane depolarization that leads 
to bacterial cell survival in the presence of antibiotics is not com-
pletely understood. However, studying this function will help us 
understand how (p)ppGpp can contribute to various mechanisms 
of antibiotic resistance. The viewpoints presented and the ques-
tions raised in this review will help guide future research in un-
derstanding the role of (p)ppGpp in these DNA repair mechanisms 
and their relation to antibiotic associated bacterial survival.

Cooperative function of RNA polymerase and ppGpp plays 
an important role in nucleotide excision repair (NER)
NER eliminates bulky DNA lesions, such as cyclobutane pyrimidine 
dimers (CPDs) and 6,4-photoproducts, induced by Ultraviolet (UV) 
radiation. There are two major NER pathways: global genomic NER 
and transcription-coupled NER (TC-NER). Global genomic NER 
removes UV-induced DNA lesions throughout the genome, affecting 
both non-transcribed and transcribed strands. In contrast, TC-NER 
specifically targets the transcribed strand. TC-NER begins with 
the stalling of RNA polymerase at DNA lesions.29,30 In vivo stud-
ies using excision repair sequencing showed a higher transcribed 
strand/non-transcribed strand repair ratio, indicating that transcribed 
strands were repaired much faster than non-transcribed strands in 
wild-type E. coli cells upon UV exposure.31,32 However, analysis of 
DNA damage and repair of CPDs at single nucleotide resolution us-
ing the CPD-seq technique revealed that CPD repair by the TC-NER 
pathway occurs globally across all regions of the genome,33 includ-
ing sense strands, antisense strands, and intergenic regions where 
transcription by RNA polymerase is required.34–36 The process of 
induction of genome-wide transcription by UV irradiation is termed 
as “pervasive transcription”. Also, based on in vivo and in vitro tech-
niques, Mutation Frequency Decline (Mfd), a forward translocase 
protein was considered to be critical for TC-NER.31,32 In vivo live 
cell imaging studies identified that the Mfd protein associates with 
RNA polymerase to aid the transcription elongation process during 

normal growth even in the absence of DNA damage.37 Cryo-elec-
tron microscopy studies revealed that Mfd protein binding to DNA 
induces structural changes in Mfd, leading to Mfd-UvrA binding via 
the ATPase motif IVa and exhibiting translocase activity via motif 
Ic.38 Single-molecule imaging in E. coli cells elucidated that ATP 
hydrolysis by UvrA is required for the Mfd-UvrA2 complex inter-
action with DNA. UvrB loading onto the template strand at sites 
of stalled RNA polymerases is synchronized with the dissociation 
of Mfd from DNA.39 Additionally, a comparison of UV-irradiated 
E. coli cells and NER-deficient cells indicated that the concentra-
tion of UvrA increases during the Save Our Soul (SOS) response 
in wildtype cells, aiding Mfd turnover and recruitment at sites of 
UV lesions where RNA polymerase stalls.37,39–41 However, solid 
evidence for this mechanism remains to be elucidated.34,35 Mfd was 
considered sufficient for transcription-coupled NER in E. coli,31,32 
but Δmfd mutants were not found to be as sensitive to UV radia-
tion,42–44 suggesting that Mfd might not be the most critical player 
in regulating TC-NER in E. coli.35 Therefore, evidences so far indi-
cated that Mfd protein fundamentally functions during the process 
of transcription apart from playing a role in the nucleotide excision 
repair pathway.

RNA polymerase backtracking, a mechanism where RNA poly-
merase slides in reverse orientation, is essential for regulation of 
gene transcription and maintenance of genome stability.45 In bacte-
ria, transcription fidelity and prevention of collisions between tran-
scription and replication processes depend on RNA polymerase 
backtracking of transcription complex containing mis-incorporated 
bases by binding to the transcription factor DksA in the presence 
of the signaling molecule guanosine tetraphosphate (ppGpp).46 Al-
though the backtracking of RNA polymerase aids proofreading, 
excessive backtracking, such as in the case of arrested elongation 
complexes, can occasionally cause codirectional collisions. These 
collisions may lead to double-strand breaks, posing a threat to bac-
terial survival.47 Notably, ppGpp accumulates upon exposure to 
DNA-damaging agents (like UV radiation),48 binds to RNA poly-
merase, induces backtracking activity, and coordinates the tran-
sition of RNA polymerase between transcription elongation and 
NER.49,50 Cryo-electron microscopy studies revealed two ppGpp 
binding sites within RNA polymerase structures.49,50 ppGpp bind-
ing to Site 1 is required for RNA polymerase backtracking dur-
ing NER, while binding to Site 2, together with the transcription 
factor DksA, inhibits transcription initiation.49,50 During nutrient 
starvation and stringent response, ppGpp binding to Site 2 inhibits 
transcription initiation at promoter regions.51,52 Upon encounter-
ing bulky lesions caused by UV light or other damaging agents like 
nitrofurazone (NFZ) or 4-nitroquinoline-1-oxide (4NQO), ppGpp 
binding to Site 1 facilitates RNA polymerase backtracking in as-
sociation with UvrD (a helicase) in an additive fashion promoting 
NER.48 The combined action of ppGpp and UvrD in backtracking 
RNA polymerase facilitates the recruitment of UvrA2BC excision 
nuclease to the lesion site, leading to damage excision.34–36,44,48 
In vitro biochemical experiments implicated UvrD’s helicase ac-
tion in unwinding the excised oligo and displacing UvrA2BC from 
DNA,53 but this concept warrants further in vivo experiments.35 
DNA polymerase I can exclusively perform this helicase function 
in the absence of UvrD.54 Mutants of relA and spoT, which are de-
ficient in ppGpp synthesis, are extremely sensitive to UV, 4NQO, 
and NFZ damage due to the failure of RNA polymerase back-
tracking, leading to compromised repair. Deletion of transcription 
elongation factors GreA and GreB, which act as anti-backtracking 
factors, can rescue the mutant phenotypes associated with (p)
ppGpp and UvrD proteins by mitigating the compromised repair 
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mechanism.44,48 NusA, another transcription elongation factor, as-
sists in UvrD-facilitated RNA polymerase backtracking upon en-
countering a DNA lesion.44,48,55 Recently, RNA polymerase was 
identified as playing a major role in the ribonucleotide excision 
repair pathway,56 however, the function of (p)ppGpp in this repair 
pathway is yet to be studied. Overall, nucleotide excision repair is 
orchestrated by RNA polymerase with the inevitable co-action of 
ppGpp at a global level upon exposure to DNA-damaging agents, 
including UV light (Fig. 1). However, the faithful regeneration of 
the damaged genome after repair might depend upon the prevailing 
environment (nutrient-rich or nutrient-deficient) and the degree of 
damage caused by UV light or genotoxic agents. Overall, the func-
tion of (p)ppGpp in nucleotide excision repair in bacterial genome 
maintenance is yet to be fully understood. An impeccable compre-
hensive analysis of DNA damage and repair upon exposure to vari-
ous DNA damages that induce bulky adducts in the genome during 
stringent response might help understand the functional role of (p)
ppGpp by nucleotide excision repair pathway in bacteria.

Downregulation of mismatch repair proteins by (p)ppGpp
MutS, MutL, and MutH are crucial proteins in the mismatch re-
pair system, responsible for recognizing misincorporated bases in 

the DNA resulting from spontaneous deamination reactions, DNA 
synthesis during replication, and repair synthesis following recom-
bination events.57–61 Defects in the mismatch repair system lead 
to the accumulation of mutations in the genome.62–64 MutH plays 
a role in methyl-directed mismatch repair by recognizing hemi-
methylated DNA and cleaving the newly synthesized unmethyl-
ated strand containing the mismatched base.65 In the absence of 
DNA adenine methylase, which methylates DNA at GATC se-
quences, MutH fails to recognize the newly synthesized DNA, 
resulting in cleavage of both parent and daughter strands.66 MutL 
aids the UvrD helicase in unwinding the strand with the mismatch, 
after which the resulting single strand is bound by single-strand 
binding protein.67,68 Exonucleases, including ExoI, ExoVII, ExoX, 
and RecJ, act on the cleaved strand, followed by repair synthesis 
by DNA polymerase III and ligation by DNA ligase to complete 
the repair process.57,58

During the stationary phase, the concentrations of MutS and 
MutH decrease approximately tenfold in E. coli cells.69 Although 
the downregulation of mutL has not been identified, there is a limi-
tation in the availability of functional MutL protein during the sta-
tionary phase.70 Furthermore, in the presence of RpoS, a general 
stress response regulator, the transcript levels of mutS and mutH 

Fig. 1. (p)ppGpp-dependent repair pathways (black arrows) illustrating the role of (p)ppGpp and the set of proteins regulated by (p)ppGpp in each repair 
pathway. Red arrows indicate the DNA repair pathways that are known to aid bacterial survival as persisters and gamblers in the presence of fluoroquinolo-
nes. Blue color arrow indicates downregulation, while purple color indicates upregulation in the presence of (p)ppGpp. (Created with Biorender.com) ArcZ, 
small RNA that regulates ArcA/B regulon; DinB, DNA polymerase IV named for its DNA Damage, inducible role; DsrA, small RNA named from Downstream 
Regulatory RNA A; HokB, Toxin protein belonging to the toxin, antitoxin system (name derived from ‘Host Killing’); MutS/MutH, mismatch repair proteins 
that play a role in preventing mutations; Obg, GTPase protein named after its association with SpoO sporulation factor of Bacillus; RecA, Recombinase A; 
RecBCD, Recombinase BCD; RuvC, recombination protein that resolves UV induced damaged complexes that undergo recombination; SOS, Save Our Soul; 
UmuCD, translesion synthesis polymerases named after their role in UV mutagenesis.
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decrease about four-fold and two-fold, respectively (Fig. 1).71 
While the regulatory mechanisms of MutS, MutH, and other mis-
match repair proteins during the exponential and stationary phases 
are yet to be studied,72 it should be noted that RpoS synthesis and 
activation are positively regulated by (p)ppGpp during the station-
ary phase or in response to limited nutrients in the media. The anti-
adapter proteins IraD, IraP, and IraM, which stabilize the sigma 
(S) factor by preventing its degradation by ClpXP proteases, are 
upregulated by ppGpp during DNA damage, phosphate starvation, 
and magnesium starvation, respectively.73–75 The ppGpp-mediated 
stabilization of sigma (S) could be a potential reason for the down-
regulation of mismatch repair during starvation. Notably, bacteria 
utilize the mismatch repair system to genetically adapt by modu-
lating their mutation rates to survive challenging environmental 
conditions.64,76 The role of (p)ppGpp in the regulation of mismatch 
repair pathway might occur (i) through stabilization of RpoS and 
(ii) through downregulation of MutS and MutH. However, further 
studies are required to verify the role of (p)ppGpp in regulation of 
the mismatch repair pathway proteins that lead to mutagenesis in 
the bacterial genome.

Role of (p)ppGpp in recombinational repair and mutagenic 
strand break repair
Recombinational repair is crucial for cells to repair strand breaks 
that may occur during physiological replication-transcription con-
flicts or exposure to antibiotics that induce strand breaks.49,77–79 
Both single-strand breaks and double-strand breaks are repaired 
through recombinational repair mechanisms. The Recombinase 
BCD (RecBCD) proteins play a key role by recognizing double-
strand breaks in the DNA and initiating recombination events at the 
site of the Chi sequence, which is a hotspot for homologous recom-
bination in E. coli (crossover hot spot instigator).80–82 Additionally, 
RecBCD proteins assist in loading the Recombinase A (RecA) pro-
tein onto single-stranded DNA, thereby initiating strand invasion 
and subsequent recombination events.81,83,84 The backtracking ac-
tion of RNA polymerase upon ppGpp binding has been identified as 
being involved in double-strand break repair in E. coli upon expo-
sure to the antibiotic phleomycin. Phleomycin sensitizes ppGpp null 
mutants and RNA polymerase Site 1 mutants similarly, suggesting 
that ppGpp binding to Site 1 of RNA polymerase could be involved 
in mending double-strand breaks.85 Double-strand break-induced 
error-prone repair processes in the presence of ppGpp might help 
bacteria adapt to environmental stresses.86 In E. coli, ppGpp and 
pppGpp inhibit replication by binding directly to DnaG, a primase 
essential for replication elongation.80,87–89 Additionally, in vitro 
and in vivo experiments show that ppGpp inhibits the promoter of 
dnaA, downregulating its transcription and consequently inhibit-
ing replication initiation.18,19 This allows cells to take some time to 
repair the damaged genome and restore the normal functions upon 
encountering favorable conditions. Studies have shown that (p)
ppGpp induction using serine hydroxamate leads to the accumula-
tion of single stranded DNA (ssDNA) of plasmid pHV16101-1 in 
B. subtilis. This increased ssDNA accumulation occurs because (p)
ppGpp binds to primase DnaG and inhibits its activity during the 
replication process.15 Furthermore, (p)ppGpp synthesized during 
UV-induced DNA damage stress prevents replication-transcription 
conflicts by mediating replication inhibition at lesion sites.80 Re-
combinase FOR (RecFOR) proteins are another set of recombina-
tion proteins involved in repairing gapped single-strand breaks and 
plasmid recombination events by loading RecA at these sites. Ruv-
ABC is a Holliday junction-specific resolvase that resolves harmful 

recombination intermediates formed during UV irradiation in E. coli 
and its absence causes cell death. However, in the absence of Ruv 
proteins, increased levels of (p)ppGpp rescue cells from death upon 
UV exposure.80 RecG is another helicase/resolvase involved in the 
resolution of Holliday junction intermediates and other recombina-
tion intermediates not resolved by Ruv proteins. RecG also plays a 
role in replication fork progression by mediating (p)ppGpp-depend-
ent modulation of RNA polymerase.90 The binding of (p)ppGpp to 
RNA polymerase destabilizes stalled RNA polymerases at UV le-
sion sites and promotes RecFOR-mediated loading of RecA, thereby 
activating fork regression. Such activation promotes lesion bypass 
by translesion polymerases, thus avoiding strand breaks but result-
ing in mutagenesis and increased survival.91 When cells are exposed 
to phleomycin, double-strand breaks are induced in the genome; 
ppGpp, together with UvrD, aids backtracking of RNA polymerase, 
which assists in double-strand break repair. The RecA protein facili-
tates the double-strand break repair mechanism.85 Also, (p)ppGpp 
might promote mutagenic double-strand break repair during stress, 
which requires both homologous recombination repair proteins and 
SOS response proteins such as LexA, RecA, RecB, RecC, RuvA, 
RuvB, and RuvC.92 Additionally, in the mutagenic double-strand 
break repair pathway, ppGpp mediates the regulation of sigma S 
protein during starvation or stationary phase through the upregula-
tion of error-prone polymerases pol IV and pol V, which aid in muta-
genic DNA break repair.93 Sigma E, another stress response protein 
activated by ppGpp, promotes spontaneous breakage of DNA. It has 
been reported that Sigma E is essential for both double-strand break 
repair and stress-induced mutagenesis.94 Therefore, (p)ppGpp might 
play a role in homologous recombination pathway by regulating 
expression of recombination repair proteins that might help restore 
genome integrity. Upon exposure to certain antibiotics like phleo-
mycin or ciprofloxacin, (p)ppGpp is also shown to promote muta-
genic double-strand break repair leading to a compromised genome.

ppGpp is required for an efficient SOS response
UV radiation in E. coli induces single-strand breaks, triggering the 
SOS response. This response activates the cleavage of LexA pro-
tein by RecA, leading to the derepression of genes typically inhib-
ited by LexA.95,96 The gene products of these derepressed genes are 
involved in repairing DNA damage and restoring genome stability. 
Although the SOS response aims to restore the genome, severe or 
prolonged DNA damage can result in mutagenesis of the genomic 
landscape.97–99 The SOS response in E. coli involves a series of se-
quential events,100 engaging approximately fifty genes, including 
lexA, recA, polII, polIV (DinB), polV (umuCD), and sulA. Studies 
have shown that the stringent response induces genes such as recA, 
ruvA, and umuD, whose gene products also function in the SOS 
response (Fig. 1).11,101 Furthermore, deletion mutants of relA or 
spoT display a delayed SOS response in E. coli.100 The control 
of ppGpp synthesis by the RelA protein during stress suggests a 
potential overlapping role of (p)ppGpp in the SOS and stringent 
responses. Recent findings from Rosenberg’s group identified that 
ppGpp binding to Site 1 of RNA polymerase is crucial for the SOS 
response that promotes CPX-induced mutagenesis.79 Additionally, 
research by Nudler’s group identified that ppGpp binding to Site 
1 of RNA polymerase facilitates nucleotide excision repair (NER), 
the failure of which renders bacterial cells sensitive to UV and 
other genotoxic agents, namely NFZ and 4NQO.50 Therefore, (p)
ppGpp binding to RNA polymerase at Site 1 is essential for (i) 
the nucleotide excision repair pathway, which serves as the first 
line of defense against DNA damage induced by UV light, and 
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(ii) an efficient SOS response during ciprofloxacin-induced mu-
tagenesis. If the nucleotide excision repair pathway fails to restore 
genomic integrity, an SOS response is triggered in UV-exposed 
cells. However, whether the induction of the SOS response during 
UV-induced DNA repair also requires (p)ppGpp remains an open 
question. Nonetheless, the role of (p)ppGpp in inducing the SOS 
response appears to be crucial for ciprofloxacin-induced mutagen-
esis, which contributes to antibiotic resistance in bacteria.

Stress-induced mutagenesis
Stress-induced mutagenesis involves cells sensing various growth-
limiting factors in the environment and,102 in turn, activating gen-
eralized stress response proteins, such as alternative sigma factors, 
SOS response proteins, and other DNA repair proteins, including 
a specific set of error-prone polymerases that induce mutations in 
the genome. Although this pathway compromises genome integrity, 
it offers the advantage of increased cell survival. In stress-induced 
mutagenesis, (p)ppGpp downregulates mismatch repair proteins 
and high-fidelity polymerases, which is necessary for bacterial 
adaptation and survival against antibiotics.49,103 ppGpp and DksA 
promote the translation and stabilization of Sigma S protein, which 
subsequently upregulates the transcription of small RNAs DsrA and 
ArcZ and also the IraP protein.104 The small RNA DsrA enhances 
rpoS messenger RNA (mRNA) transcription by binding to its inhib-
itory stem-loop structure in the 5′-UTR and prevents rpoS mRNA 
degradation by RNase E,105 while the IraP protein stabilizes RpoS 
protein expression. This upregulation of RpoS, a global regulator of 
the general stress response, induces a switch from high-fidelity pol-
ymerases to error-prone polymerases responsible for stress-induced 
mutagenesis and survival.106 Therefore, (p)ppGpp is a master regu-
lator of stress-induced mutagenesis pathway without which bacte-
rial cells might succumb to death upon exposure to stress conditions 
including DNA damaging agents and antibiotics.

CPX-induced mutagenesis and bacterial survival against fluo-
roquinolone antibiotics as persisters and gamblers
CPX is a fluoroquinolone antibiotic that binds to topoisomerase II 
and induces strand breaks.79 At minimal antibiotic concentration 
of CPX, around 20% of the cell subpopulation shows an increased 
number of mutations upon survival against this antibiotic. The 
Rosenberg group identified that in this subpopulation of bacteria, 
termed gamblers, cells risk genome mutability compared to the 
rest of the population.77 During this process, CPX-induced strand 
breaks initiate the SOS response, which leads to increased reactive 
oxygen species within the cells due to impaired aerobic respira-
tion or electron transport chain, triggering the stringent response.77 
This is followed by the concerted action of (p)ppGpp and DksA, 
favoring RpoS activation and the expression of error-prone poly-
merases as observed in stress-induced mutagenesis. Fluorescent 
cell sorting experiments identified that the gambler subpopulation 
of bacteria exhibits an active general stress response. The sigma S 
active gambler cell subpopulation can generate 400-fold more mu-
tants compared to the sigma S inactive population upon exposure 
to CPX.77,79 This survival is dependent on the adaptive mutations 
facilitated by DNA repair pathways that rely on (p)ppGpp. The 
absence of the stringent response-induced (p)ppGpp, leads to bac-
terial cell death upon treatment with fluoroquinolone antibiotics. 
Biochemical and genetic studies have shown that the binding of 
ppGpp at two distinct sites in the beta subunit of RNA polymerase 
is essential for this mutagenesis and survival mechanism. While 

binding of ppGpp to Site 1 is essential for the SOS DNA-damage 
response that aids in the backtracking of RNA polymerase during 
elongation, the binding of ppGpp along with DksA to Site 2 on 
RNA polymerase initiates transcription by sigma S (σS), a global 
regulator of the general stress response or stringent response. Strin-
gent cells give rise to a higher number of AmpR and RifR mutants 
compared to stringent off cells. (p)ppGpp binding-mediated back-
tracking of RNA polymerase also leads to the pausing of RecBCD 
nuclease activity on the double-strand break, ensuring the loading 
of RecA on ssDNA, forming a RecA-activated nucleoprotein fila-
ment that induces the SOS response and subsequent double-strand 
break repair. In the presence of (p)ppGpp, Sigma S protein, togeth-
er with recombination proteins such as RecA, RecBCD, RuvC, po-
lIV, polV, and polII, aids in this mutagenesis process via mutagenic 
double-strand break repair. It should be noted that CPX-induced 
mutagenesis occurs at highly transcribed regions of the genome,79 
associated with higher occupancy of RNA polymerase. Therefore, 
RNA polymerase and ppGpp are crucial to CPX-induced mutagen-
esis that occurs during transcription in bacteria, aiding the survival 
of the gambler subpopulation (Fig. 1).107

Antibiotic persistence in the presence of the minimal inhibitory 
concentration of ofloxacin,27 another fluoroquinolone antibiotic, 
has been shown to induce membrane depolarization in a subpopu-
lation of cells that exhibit increased expression of the toxin HokB. 
The Obg protein, a universally conserved GTPase found in bac-
teria, has been identified to trigger persistence by inducing HokB 
protein expression, a process that requires (p)ppGpp (Fig. 1).108 
Moreover, the ObgE protein has also been identified to function 
as a checkpoint regulator of replication. Genetic studies indicated 
that ObgE acts in conjunction with RecA and RecB repair proteins 
to prevent strand breaks and fork regression during replication ar-
rest upon exposure to replication inhibitors or during the stringent 
response.109,110 However, the in vivo role of (p)ppGpp binding to 
ObgE in resolving the replication fork conflicts that might arise 
during the stringent response is yet to be studied. While several 
factors affect persister formation in bacteria, the (p)ppGpp sign-
aling molecule plays a significant role in persister formation in 
most bacterial species, although there are some exceptions.111 The 
mechanism of Obg-mediated antibiotic persistence in the pres-
ence of (p)ppGpp is not yet completely understood. Additionally, 
it remains unexplored whether the gambler subpopulation and 
antibiotic persister subpopulation arise during exposure to CPX 
within the host, where the concentration of the antibiotic might 
vary in different tissues of the body.112–117 It should be noted that 
(p)ppGpp levels increase in human and mouse gut microbes dur-
ing the fasting phase,118 which might enhance adaptive mutations 
and aid in the survival of antibiotic-resistant microbes, including 
persisters and gamblers.28 It is intriguing to investigate if the gam-
bler subpopulation carrying adaptive mutations can subsequently 
multiply into an antibiotic-resistant population upon prolonged 
exposure to the minimal antibiotic concentration of CPX. Since 
(p)ppGpp is involved in both gambler cell and antibiotic persister 
cell formation in the presence of fluoroquinolones,119 ppGpp could 
potentially serve as a link that connects DNA repair pathways to 
bacterial survival against antibiotics (Fig. 1).

Limitations
It should be noted that (p)ppGpp independent mechanisms of anti-
biotic resistance development in bacteria are not discussed in this 
review.
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Conclusions
The stress signaling molecule (p)ppGpp primarily binds to RNA 
polymerase, inducing backtracking upon encountering DNA le-
sions. This interaction promotes nucleotide excision repair (NER) 
and the Save our Soul response by recruiting repair proteins. (p)
ppGpp also regulates proteins belonging to the homologous re-
combination repair pathway that help maintain genome integrity 
upon exposure to DNA damaging agents. Consequently, prolonged 
stress may favor mutagenic repair pathways that involve down-
regulation of mismatch repair proteins, thereby compromising 
genomic integrity. Stress-induced mutagenesis in the presence of 
antibiotics like ciprofloxacin (CPX), leads to adaptive mutations in 
the genome potentially passing antibiotic resistance to successive 
generations. The involvement of several DNA repair pathways 
discussed above underscores the complex interplay between (p)
ppGpp-mediated DNA repair pathways and antibiotic resistance. 
Understanding these regulatory mechanisms is essential for devel-
oping effective strategies to combat antibiotic resistance.
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